Category Archives: Wiring

Electrical wiring, relays, fusebox

Improve the Factory Triumph TR6 Courtesy Light

LED festoon bulb on the bottom, original on the top

In this article, I’ll describe how to improve the factory Triumph TR6 courtesy light.  On the original 1971 Triumph TR6 there is only one courtesy light – I talked about that in the previous article and now, I’ll show you the results of how to improve the courtesy lights with not one, but two.

I used two courtesy light housing mounted on the kick panels on both footwells.  You can see that in the picture above.  Since I changed all lights on bowtie6 with LED’s, I thought about improving the dim bulbs originally fitted to the courtesy lights.  Sure enough, there are replacement festoon bulbs with LED’s.  The difference is dramatic; the LED’s are just so much brighter

36mm festoon bulbs

Just one note of caution:  there are numerous sized festoon bulbs.  The ones that fit the TR6 courtesy light mount are 36mm in size.  As you can see in the picture above, these even come with a heat sink on the back.  They are so bright I had to angle them down a little towards the bottom of the bulb holder.  They work great!

Wiring the lights

I spent a few hours putting all this together today.  And the result is quite impressive.  I’m pleased…

First, the passenger side.  Here you can see the new light on.  I want to show this picture first because it includes part of interior fuse pane.  You can see the bottom 10 amp fuse; that is new.  When we fitted the Ecotec in bowtie6, I ended up re-wiring the whole car.  This fuse panel holds all the circuits inside the cab.  There is another one in the trunk as well as the main panel under the hood.  I had left one fuse slot with a constant “hot” for the courtesy lights.  And this finally got wired up today.  In case you want to see more about this, check out bowtie6‘s Custom Wiring – Inside the Cab (if you look close, you can see this same fuse panel with the missing circuit!).

Here is the driver’s side with the new light turned off.  This picture is misleading as hell though.  I took these pictures with my new iPhone12 and I must say, the camera is simply amazing.  It compensated for the low light big-time.

Here, we have the new light on.  The LED festoon bulb sure is worth it.  And I must say, they are cheap.  They are just a smidge over a $1 each.

I had these Coco mats custom made; missed the heel pad by a few inches – you can see the wear just ahead of the pad

One more showing the bottom of the dash.  “What is that cutout on the dash for?”, you ask…  That is part bowtie6‘s Tilt Steering.

And, what does the passenger’s side look like?  Take a look…

I need to get new Coco mats! The red dots have faded. Then again, they are about 15 years old…

Yeah, its been long overdue, but the result is pretty cool.

Remember I mentioned the new iPhone12?  Just for kicks, I stepped out in the garage, turned off all lights and flipped the light switch to the “on” position and took this picture.  Note the doors are both shut but the lights are on.  Each light has a little switch.  It took me quite some time to figure this out, but the way I wired this up, the lights will operate in either way:

  • With either door open – so opening the passenger and/or driver door will turn the lights on
  • With both doors closed –  by sliding the switch to “on”.  And if you do this, both lights will light up.

Yeah… That’s an HSR sticker on the back glass of the hard top.

Except for making the picture smaller, this picture has not been edited.  It has been a good day.

Stay safe people!

Triumph TR6 Courtesy Light

The factory Triumph TR6 courtesy light is originally installed on a plinth, mounted on the driveshaft tunnel cover between the seats, toward the back.  Unfortunately, the new driveshaft cover in bowtie6 is different from the original and the plinth does not fit so well.

Since the two floorboard kick panels are scratch built, I figured why not mount a courtesy light on each one.  I had this all working after I wired the car up for the first time, but when I installed the Ecotec, all that came out because I had to build a new fuse panel.  I left the lights on the kick panels, but never wired them up.

 

The reason I never wired this back up was the lack of a proper 12v source to test with.  Sure, take the battery out, put some leads on it and test away.  Too much trouble.  Well, remember that NOCO Genius 10 Battery Charger that I bought earlier this year?  It has a setting that supplies 12v to the terminals.  You can see the little red 12v light below…

I wired up the circuit and voila, after a few tries, got it working…

You can see in the photo above, the terminals, my buggered up wiring and the two lights in action.  Job done!

Well…  Not so fast.  Two problems came up.

First Problem

My original wiring worked well, but my initial solution did not take into account the fact you can flip a little switch on each light to turn it on when the doors are shut.

Duh!  After scratching my head a little, all it took was a few tests with my multimeter and now I have the proper wiring on paper.

Second Problem

When I wired bowtie6 up, I used WeatherPack connectors for everything.  All terminals were crimped, soldered and covered with shrink wrap (where necessary).  You can see the three terminal WeatherPack connector in the photo above on my kick panels.  All this was put together at my cousin Jim’s shop – he has a whole array of wire, connectors and terminals.  Since I have a few other circuits to rework, I needed a small kit of Weather Pack’s rather than ordering in bulk.  This is where I found CustomConnectorKits and placed an order for one of their smaller kits.

If you are a regular here, you know I very seldom “plug” anyone.  These folks were gracious enough to send me my kit priority mail (I did not ask for that) so this is my way of thanking them for the super fast service.  I will have my kit in the next couple of days!  This is highly appreciated.

The next step will be to add a new circuit to the fusebox with a constant 12v supply and make up my connectors using my new Weather Pack ends.  In the middle of doing my research, I found replacement LED festoon bulbs – they will be certainly brighter and won’t get hot.  There is a set of these bulbs on the way too.

I have some time off from work in the next few days, so I’ll be putting this all together next.  I’ll have an update article soon.

As always, be safe…

Good Electrical Ground

A good electrical ground.

How many times have we read about the need of having a good electrical ground in classic cars?  Well, I’ve had my fair share of bad electrical grounds through the years and this weekend I fell victim to one.

Weekends are my time to enjoy driving bowtie6 and this past Saturday was no exception.  At a red light not far from the house some dipshit was fiddling with his phone instead of paying attention to traffic.  I reached down below the dash and tapped the single-pole momentary-on switch that controls the horn…

Nada.  Nothing.  Horn did not work.  At this point I had the default Whiskey-Tango-Foxtrot expression on my face.  Damn!  Electrical gremlins.  Fist thing that pops in my head is failure to have a good electrical ground.

And so, when I get back home I check the fuse panel under the dash that I made and controls all electrical circuits under the bonnet (click here for a more detailed post).

IMG_2825I checked all fuses and they all passed with no issues.  Then, I pulled each one out and made sure all connections were in order.  I know, the wiring is a bit busy – but this is rather hard work to do especially in the tight confines of the passenger’s side footwell.  I suppose this is what “bespoke” is all about!  😉

So, next was to go through the main power box.  This is located in the engine compartment (click here for more details).

IMG_2824As you can see, here is the main power distribution block in bowtie6.  The six red-capped affairs on the bottom are circuit breakers.  They feed hard voltage to each purple relay.  In addition there is another fuse panel located behind the relays as well as the engine’s PCM.  After careful inspection all this checked out just fine.  When I flipped the switch under the dash for the horn, the “horn” relay clicked as expected.  Still no horn – rats!

Which brings us to the next photo (a closeup of the featured image above):

IMG_2826 closeupThe entire circuit governing both horns relies on the ground made by the connector to the body.  As it turns out, I pulled this connector and ensured there was no rust.  Sure enough, after cleaning the connection, adding a little de-electric grease, and plugging the connector back in place all worked just fine.

And there you have it, the root of all evil… The lack of a good electrical ground.

bowtie6‘s Custom Wiring – Inside the Cab

The last and final installment of the bowtie6‘s custom wiring takes us to the inside of the cab.  This will be the last on wiring – I know this is getting boring but I just want to show what can be done with a little creative thinking.

So what do we have here?

The picture above shows the quilted maple dash we made, it is mounted to an aluminium backing dash which in turn is bolted to the stock TR6 mounts.  The vent is fully operational with a bit of a twist – I’ll have to write about this later…

Behind all this you can see what I call the “cab” wiring.  Here are two spade fuse housings holding 7 of 8 fuses.  The ones on the left side are constant “on”; the ones on the right are switched.  In the middle you can see four relays.  Here is a closeup:

Why the missing fuse?  I am not completely done with the interior wiring and this circuit will be used at a later date when I add the final details to the inside:  fully operational door activated interior lighting.

Relays & Fuses

Four relays are mounted on this plate.  They control the following:

  • Heater and windshield wipers.
  • Turn signals – one relay controls “left”; the other controls “right”.
  • Parking lights.

As with all the other switches, the heater and windshield wiper switches make “ground”.  They in turn activate the electromagnet on the relays.  The B+ to the electromagnet side of the relays are fed by the fuses on either side.  I did not use circuit breakers here, I just used the spade fuese.

The turn signals are controlled by a stock TR6 turn signal stalk.  The turn signals feed goes through a “blinker” switch and from there, a wire is sent forward to control the front signals and a matching wire is sent rearward to the back turn signals.

The same process is done for the parking lights.  The parking lights and headlights are both controlled by a universal park-light/headlight switch.  I bought this from the same supplier I bought all the wiring from and is commonly used in street rods.

Two banks of fuses flank the relays.  The left ones are constant “ON” and supply power to the ignition switch, ECM and dash clock.  Yes, we have a clock in bowtie6!  I’ll have a writeup on the VDO gauges soon.

On the right, the fuses are switched “ON”.  These fuses supply such things are the control side to the relays as well as instrumentation lights and such.

In Summary

Once again, I guess you must be saying “this guy has a lot of time on his hands”.  Then again I wanted to make this flawless and 100% reliable.  I imagine you are asking yourself if this can be “seen”.  Well, I made sure to hide this as best as possible.  You have to get on your knees to see the fuse panel.  If you don’t know about it, you will never see it.  Finally it is mounted high enough that it does not get in the way of your knees and/or feet.

Another great advantage about all this is that all three panels are very easily accessible.  If for some reason a fuse blows it can be easily found and replaced.  When I built bowtie6 the first time, the fuse panel was in one central location.  It was VERY difficult to get to and was not easily serviceable.  I made sure to make it this time very “user friendly”.

And Then There is More…

See anything “unusual” in the pictures above?  There are two small details that do not exist in a stock 1972 Triumph TR6.  See if you can spot them.

If not, stay tuned and there will be more about this soon…

 

bowtie6‘s Custom Wiring – Trunk

The last post talked about the harness and fuse box under the hood.  Today’s post shows the wiring in the trunk.

Since we are far from “original”, I wired up bowtie6 in a practical way.  There is a fusebox in the engine compartment (as discussed previously), one in the cab compartment (to be discussed) and one in the trunk (discussed here). Why go through all this trouble?

Well, for starters I wanted to keep things simple.  But mainly because there was not enough room underneath the hood!  Besides, it makes sense to control things where they belong and in the trunk there are several things to control…

Battery

The Optima Red-Top dry cell battery in bowtie6 is mounted in an aluminium enclosure pictured above.  The B+ terminal has a welding machine cable attached to it and it runs inside the TR6’s cab and ties into the firewall post.  The ground terminal is also a welding machine cable going through the body and securely bolted to the frame.  In the engine compartment, there are two more welding machine cables grounding the body and the engine to the frame. Finally, there is a B+ lead from the battery to two circuit breakers mounted in a special mount that control the following:

  1. Fuel Pump
  2. Backup Lights
  3. Brake Lights

Fuel Pump

The ECOTEC needs a high pressure fuel supply.  This comes from a GM high pressure pump as fitted to late-model Corvettes.  We used that pump because it is very small, has a filter “sock” and can be mounted in a small enclosure.  In the picture above you can see the fuel pump enclosure – that is the aluminium box resting on the trunk’s floor.  I’ve written about this before but basically that is an external tank plumbed to the main custom made all aluminium fuel tank.  We have about a 300 mile range in city driving with this setup.  I am sure it will be more once we do a long, highway trip.

The picture above shows two circuit breakers and three relays.  The fuel pump has one of the relays and one of the circuit breakers.  The control side of the relay is fed from a signal from the ECM.  When done right, the ECM sends a 5 second signal and energizes the pump.  This primes the fuel rail and gets things ready for ignition.  Once the engine fires, the ECM re-energizes the relay and that keeps the pump running until the ignition switch is turned off.

Backup Lights

The AISIN 5 speed gearbox has a built in switch that makes ground when the stick engages reverse.  I took advantage of this to make the TR6’s backup lights work.  Basically since this is a switch and it makes ground, I wired this into the control circuit of a relay.  This minimizes wear on the switch and voilà, we have backup lights.

Brake Lights

Ah!  Brake lights!! As you had guessed, I used a relay to run the brake lights.  As with the fuel pump and backup lights there is a hard voltage circuit from B+ on the battery to the relay.  This is controlled by breaking ground on the brake pedal switch.  Simple.  Brakes work flawlessly and will be there forever – the brake switch breaks ground.

 In Summary

Once again, I realize this is borderline overkill.  However, this makes things very simple and easy to fix if need be.  Setting this back circuitry together took little time and works like a charm.  As with the engine compartment fuse box, I added red “booties” to the circuit breakers.  You can also see the trunk floor is fully covered in black carpet now.

Here is a closeup of the rear wiring:

If you look close enough you will see several things here…

  • The lid to the battery box.  The box is made from aluminium and bolted securely to the side floor of the trunk.  This is mounted on the passenger’s side to even out weight distribution.  As mentioned previously, the battery is a dry cell Red Top Optima battery.  They are very durable and although they are expensive, they are very worth the cost.
  • The black plastic background.  That is ABS material pre-bent and cut to fit the sides of the trunk.  There is one on all sides, including the inside back of the trunk.  I used this because it is very easy to work with and can be shaped with simple tools such as scissors and a break.  This stuff is also very durable and looks very clean.  Much superior to the crappy cardboard “trunk liner” kits sold by the Big Three vendors.
  • The aluminium plate holds three relays and two circuit breakers.  I’ve discussed these above.
  • Finally, if you really look close you can see two rubber hoses right behind the circuit breakers.  What is this all about?  Well, my bowtie6 is from the very fine 1972 vintage.  In 1972 a special “tank” was affixed to the inside of the passenger’s side trunk.  This tank had two lines attached to it.  The first line came from a vent on the fuel filler neck.  The other line was routed to the intake.  This ensured all fuel tank fumes get routed back to the engine.  This has been retained and is fully operational in bowtie6.

Attention to detail?  Hell yes.

There are so many small details on bowtie6 that get overlooked!  However, I know they are there and this makes the difference.  With this TR6, there is not only killer looks in the form of a very shiny paint job, a powerful engine and a great handling frame but there are also countless details that separate this from even “restored” examples…